The Crystal Structure of Triacetylsphingosine

BY A. M. O'CONNELL

Crystallography Group, Medical Research Council Unit for Molecular Structure Analysis, University of Göteborg, Göteborg, Sweden

AND I. PASCHER

Institute of Medical Biochemistry, University of Göteborg, Göteborg, Sweden

(Received 18 October 1968)

The crystal structure of triacetylsphingosine (D-erythro-1,3-diacetoxy-2-acetamido-4-*trans*-octadecene, $C_{24}H_{43}O_5N$) has been determined by direct methods. The crystals are orthorhombic, $P2_12_12_1$, with a = 5.002, b = 8.709 and c = 60.62 Å. Positional and isotropic thermal parameters of the non-hydrogen atoms were refined to give a final R index of 0.109. The molecules are arranged head-to-tail in layers within which the carbon chains pack according to the common orthorhombic subcell, $O \perp$. The chain axis forms an angle of 58° with the end group planes. Adjacent layers show opposite tilt of the chains. In spite of the bulky acetyl branches the molecules adopt a very effective packing ($D_m = 1.07$ g.cm⁻³). The molecules are connected by a continuous system of N-H---O hydrogen bonds parallel to **a**, and there is also evidence for two weaker C-H---O type interactions.

Introduction

For our investigations on the structure and function of lipids occurring in biological membranes, model compounds of sphingolipids (sphingosines, ceramides, cerebrosides, sulphatides) are prepared in our laboratory for use in biochemical and physicochemical studies. The base molecules in all sphingolipids are sphingosines. These long chain amino alcohols differ in chain length, degree of saturation or number of hydroxyl groups. A brief review of naturally occurring sphingosine species has been given by Karlsson & Holm (1965) and Karlsson, Samuelsson & Steen (1968). The most common of these molecules is the parent base, sphingosine (D-*erythro*-1,3-dihydroxy-2-amino-4-*trans*-octadecene) which was first isolated by Thudichum (1882) from brain lipids.

Though free sphingosines and their simple acetyl derivatives are not present in the membranes their properties, especially with regard to their molecular packing and ability to form hydrogen bonds, are of interest for a comparison with the more complex lipids. Among the acetates of sphingosines the fully acetylated derivatives exhibit good crystallizing properties, sharp melting points and high optical rotation. On account of these properties they are used for purification and characterization of sphingosines (Thomas & Thierfelder, 1912; Klenk & Diebold, 1931; Carter, Norris, Glick, Phillips & Harris, 1947).

$$CH_{3} - (CH_{2})_{12} - CH = CH - CH - CH - CH_{2}$$

$$| | | |$$

$$O NH O$$

$$| | | |$$

$$CO CO CO$$

$$| | | |$$

$$CH_{3} CH_{3} CH_{3}$$
(I)

Triacetylsphingosine (I) crystallizes readily from acetone or ether in well-shaped brittle needles. The melting point (104.5°) of this lipid appears to be unexpectedly high when compared with the free sphingosine base (m.p. 83°) or the corresponding *N*-acetyl derivative (m.p. 87.5°). Because of the presence of free aminoand hydroxy groups, both of these latter compounds should be able to form more effective hydrogen bond systems than the fully acylated derivative. As acetylation considerably decreases the polarity of sphingosine and moreover introduces bulky acetyl branches into the molecule these physical properties must then be a molecular packing effect.

The structure analysis of triacetylsphingosine is the first of a series of comparative single-crystal investigations on sphingolipids being made in this laboratory.

Table 1. Phase assignments for specifying the origin and enantiomorph and from the Σ_1 relation

		E	φ	l	k	h
	1	2.95	$-\pi/2$	27	0	2
Origin and anosticmore		2.64	$-\pi/2$	43	3	0
origin and enantionorp		2.26	$-\pi/2$	44	3	0
	J	1.51	$\pi/2$	0	6	3
)	3.35	0	8	2	0
Σ_1	} Σ	2 ·49	π	40	4	0
	J	2.14	π	48	2	0

Table 2. Observed and calculated structure factors ($\times 10$)

The phase angles are given as fractions of one revolution. Unobserved reflexions (defined as those having a net intensity < 2 e.s. d. are indicated by negative signs on the $|F_0|$'s. They were assigned the smallest observed intensity.

н к	L Pobs Pcalc	PI	н	K L	Pobs Po	ale i	PI	H .	K I	L Pobs	Pcalc	FI	ĸ	ĸ	L	Pobs P	calc	PI
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,) 2 C C O C O C O C O C O C O C O C O C O)0000000000000000000000000000000000000	12 12 12 12 12 12 12 12 12 12 12 12 12 1	128 128 128 128 128 128 128 128 128 128		

Table 2 (cont.)

1	K 2 2 2 7 8 9 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1-L77 1278 1977 1977 1977 1977		Peale 116 1-0 102 128 197 159 50
*************	2901 233 356 78901 2	1237 1977 1767 18-6567 11-5 11-5 11-5 11-5 11-5 11-5 11-5 11-	12577798 t7 59 53 6 1 5 1 2 5 1 1 2	000000000000000000000000000000000000000
~~~~~~~~~~~~	373901 234 42 7890	956774600102700	89536125125125125086656	0.813 0.326 0.979 0.391 0.359 0.359 0.5537 0.5537 0.5537 0.5537
~~~~~~~~~~~~~~~~	89012340123	1700 - 522 - 5288 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5228 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 52888 - 52888 - 5288 - 5288 - 5288 - 5288 - 5288 - 5288 - 52	1685826422555664	0.739 0.252 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297
າຍພາຍຄາຍຄາຍຄາຍ	5 · · · L 7 & 9011 1234	1200	76 1258 148 118 379 239 239 239 239 239 2472	0.653 0.653 0.160 0.752 0.762 0.636 0.238 0.636 0.213 0.551
	1110789901283	100000000000000000000000000000000000000	103 108 178 308 157 226 134 110	0.155 0.455 0.455 0.350 0.673 0.883 0.885 0.885 0.371 0.455
	1222222899012	-3731 2270 226	45 179 105 154 76 28 77 76	0.614 0.871 0.908 0.379 0.297 0.992 0.563 0.758 0.956
	334507890112 334507890142	113 -47 -40 -47 134 206 116	115 93 732 125 227 1195	0.249 0.215 0.747 0.444 0.800 0.795 0.189 0.469 0.469
	42345678901 3333333333333	2058 2751 2753 1783 200 2751 1882 200 200 1882 200 200 200 200 200 200 200 200 200	214 286 39 242 209 186 120 38 120 38	0.518 0.247 0.402 0.285 0.275 0.275 0.718 0.696 0.207 0.050 0.702
	5201234567	-52 -34 1477 157 193 101 236	43 25 178 174 114 206 226	0.702 0.246 0.250 0.635 0.576 0.090 0.114 0.987 0.107 0.443
	4 7 8 9 10 12 14 10 10 10 10 10 10 10 10 10 10	235 223 297 297 297 299 129 409 362 316	220 284 320 224 112 413 371 191	0.443 0.646 0.766 0.852 0.976 0.446 0.667 0.823 0.159 0.409
	4 17 4 18 90 4 22 4 22 24 4 4 22 25 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	216 89 -33 210 221 189 -36 185 185	191 85 234 213 212 28 161 182	0.409 0.909 0.810 0.338 0.666 0.968 0.968 0.397 0.505
	44444444444444444444444444444444444444	87 140 146 127 113 1130 1130 1130 1130 1130 1130	73 127 30 123 72 117 8	0.022 0.671 0.278 0.520 0.669 0.103 0.158 0.158
	1050789010 4444441	74 137 9 72 105 137 165 116	85 110 70 98 117 182 114	0.798
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.3.4.47890 1.1.1.1.1.1.1.4.4	12339955228	173 88 90 138 110 23 10 23 10 23 10 23 10 23 10 23 10 23 10 23 10 23 23 23 20 23 23 23 23 23 23 23 23 23 23 23 23 23	0.03
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		148 112 132 200 259	1-0 102 109 191 284	0.349

Table 2 (cont.)

н	ĸ	L Fob	s Peale	FI	н к	L	Pobs	Pcalc	FI	н	ĸ	LF	obs P	cale	FI	H	ĸ	L	Pobs I	calc	PI	
๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚	266666666666666666666666666666666666666					00,000,000,000,000,000,000,000,000,000				, , , , , , , , , , , , , , , , , , ,	00000000000000000000000000000000000000		275555528853852852828282828282828282828282	252 5757 257 257 257 257 257 257 257 257		***************************************	44444444444444444444444444444444444444	928222325247239930 0 1 20 4 5 6 7 8 9 10 12 10 17 8 17 8 17 8 19 20 22 22 22 20 20 1 20 1 20 1 20 1 2	ኯ፝ኯጘኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯ	***************************************		

Experimental

Sphingosine (D-erytho-1,3-dihydroxy-2-amino-4-transoctadecene) was prepared from brain sphingomyelin by enzymatic and alkaline degradation in collaboration with Karlsson (1968). The crude sphingosine, which still contained about 13% homologues, was converted into the triacetyl derivative and purified by slow crystallization in a programmed cryostate. After 6 recrystallizations from diethyl ether the impurities (consisting of the triacetyl derivatives of mainly dihydrosphingosine and to a less extent of C_{20} -sphingosine) had fallen below 1%.

Crystal data

 $C_{24}H_{43}O_5N$,

D-erythro-1,3-Diacetoxy-2-acetamido-4-trans-octadecene.

Molecular weight:	425.3,
Melting point:	$104.0-104.5^{\circ}C$ (corr.);
Optical rotation:	$[\alpha]_{D}^{20} = -14.0 \pm 0.1^{\circ}$ (c = 1 in chloro-
	form);
Orthorhombic:	$a = 5.002 \pm 5$, $b = 8.709 \pm 8$, $c =$
	$60.62 \pm 6 \text{ Å} (\lambda = 1.5418),$
Space group:	$P2_{1}2_{1}2_{1};$
Absent spectra:	<i>h</i> 00, <i>h</i> odd; 0 <i>k</i> 0, <i>k</i> odd; 00 <i>l</i> , <i>l</i> odd;
Density	$D_m = 1.07 \text{ g.cm}^{-3}$ (by flotation)
	$D_x = 1.07 \text{ g.cm}^{-3},$
	Z=4.
	$\mu = 6.38 \text{ cm}^{-1}$ for $\lambda = 1.5418 \text{ Å}$.

The data collection was carried out on a Hilger and Watts four circle automatic diffractometer with a crystal having dimensions $0.30 \times 0.20 \times 0.15$ mm. Intensity measurements were made by step scanning on $\omega/2\theta$ using Ni-filtered Cu K α radiation. A total of 1412 reflexions having $2\theta < 95^{\circ}$ were measured. Of these 930 had net intensities exceeding twice the estimated standard deviation and were coded 'observed'. The other reflexions were not included in the subsequent refinement and R index calculations.

Solution and refinement

The phase determination was carried out by application of the Σ_1 , Σ_2 and tangent formulae [see Karle & Karle (1966) for a recent review of these techniques]. Normalized structure factors $|E_{\hbar}|$, were evaluated with use of the formula

$$|E_{\mathbf{h}}|^{2} = |F_{\mathbf{h}}|^{2} / \varepsilon \sum_{j=1}^{N} f_{j}^{2}(\mathbf{h})$$
(1)

where the $|F_h|$ are the structure factor magnitudes on an absolute scale and are corrected for vibrational motion, f_j is the atomic scattering factor for the *j*th atom in a unit cell containing N atoms and ε is a constant which corrects for the space-group extinctions.

In order to initiate the phase determination procedure the signs of four reflexions were assigned to fix the origin and enantiomorph. Three more phases were evaluated with the Σ_1 relation:

$$s\Sigma(0,2k,2l) = s\Sigma(-1)^{h+k}(|E_{hkl}|^2-1)$$
 (2)

where s means' sign of 'and similar expressions apply for the 2h,0,2l and 2h,2k,0 data (Karle & Hauptman, 1956). Phases calculated in this way were accepted if their associated |E| values exceeded 2.0 and if their sign probability,

$$P + (2\mathbf{h}) = \frac{1}{2} + \frac{1}{2} \tanh(\sigma_3 | E_{2\mathbf{h}} | \Sigma_1 / 2\sigma_2^{3/2}),$$

was greater than 0.80. In this formula $\sigma_n = \sum_{j=1}^N Z_j^N$,

where Z_j is the atomic number of the *j*th atom.

The list of 7 known phases (Table 1) was extended and refined by use of the Σ_2 and tangent relations

Table 3. Atomic parameters and (in parentheses) their standard deviations

The e.s.d.'s in	the positions hav	e been multiplied by	10^4 and in the E	3 values by 10.
	X/a	Y/b	Z/c	В
C(1)	0·1661 (36) Å	1·2422 (19) Å	0·2077 (3) Å	4.5 (4)
C(2)	0.3043 (36)	1.2164 (18)	0.1865(3)	4.1 (4)
C(3)	0.1868 (32)	1.0811 (18)	0.1742 (2)	3.8 (4)
C(4)	0.3321 (38)	1 0452 (19)	0 1539 (3)	5.1 (4)
C(5)	0.2362 (50)	1.0470 (23)	0.1342 (3)	7.6 (5)
C(6)	0.3765 (43)	1.0175 (23)	0.1121(3)	6.7 (5)
C(7)	0.2470 (46)	0.8861 (22)	0.0992 (3)	6.6 (5)
C(8)	0.3845 (45)	0.8647 (23)	0.0765 (3)	6.9 (5)
C(9)	0.2682 (39)	0.7351 (19)	0.0632(3)	4.8 (4)
C(10)	0.3926 (39)	0.7145(20)	0.0411(3)	5.2 (4)
C(11)	0.2685 (42)	0.5859 (20)	0.0276 (3)	5.6 (4)
C(12)	0.3935 (39)	0.5615 (19)	0.0050 (3)	5.0 (4)
C(13)	0.2683 (40)	0.4327 (19)	-0.0079 (3)	5.1 (4)
C(14)	0.3890 (39)	0.4092 (20)	-0.0308(3)	5.3 (4)
C(15)	0.2721 (41)	0.2767 (19)	-0.0437(3)	5.3 (4)
C(16)	0.3862(43)	0.2526(21)	-0.0662(3)	6.0 (5)
C(17)	0.2747 (50)	0.1152 (24)	-0.0787 (3)	7.8 (5)
C(18)	0.3925 (45)	0.0876 (25)	-0.1012 (3)	7.5 (6)
C(19)	0.2379 (42)	1.3965 (22)	0.2405 (3)	5.3 (4)
C(20)	0.4158 (39)	1.5053 (23)	0.2519 (3)	5.8 (5)
C(21)	0.4902 (43)	1.4258 (21)	0.1636 (3)	5.2 (4)
C(22)	0.4374 (38)	1.5654 (20)	0.1501 (3)	5.3 (4)
C(23)	0.0232 (47)	0.8420 (25)	0.1878 (3)	6.7 (5)
C(24)	0.0793 (48)	0.7023 (25)	0.2025(3)	7.8 (6)
O(1)	0.3245 (23)	1.3512 (12)	0.2203(2)	4.8 (3)
O(2)	0.2076 (26)	0.9499 (13)	0.1891 (2)	5.4 (3)
O(3)	0.0364 (38)	1.3392 (18)	0.2475 (2)	8.4 (4)
O(4) ·	-0.1461 (38)	0.8394 (19)	0.1730 (3)	10.9 (5)
O(5)	0.7266 (29)	1.3811 (14)	0.1674 (2)	6.4 (3)
N(1)	0.2810 (27)	1.3546 (14)	0.1728 (2)	3.8 (3)

$$\varphi_{\mathbf{h}} = \langle \varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}} \rangle , \qquad (3)$$

$$\tan \varphi_{\mathbf{h}} = \frac{\sum_{\mathbf{k}} |E_{\mathbf{k}} \cdot E_{\mathbf{h} - \mathbf{k}}| \sin (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}})}{\sum_{\mathbf{h}} |E_{\mathbf{k}} \cdot E_{\mathbf{h} - \mathbf{k}}| \cos (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h} - \mathbf{k}})}$$
(4)

Initially only terms with $|E_{\rm h}| > 2.0$ were used in (3). Phases were rejected if their variance (Karle & Karle, 1966) exceeded 0.5 radian. The accepted phases were then refined with (4). If, after several tangent cycles, the shift in the phases calculated by (4) were large or tended to oscillate these terms were rejected. Terms were also rejected if their calculated |E| value, $|E_{\rm h}|_{\rm calc}$, determined from the numerator and denominator of (4), was less than a minimum specified value, initially set at 0.8. The tangent iteration was terminated when all shifts were less than 5°. The minimum |E| value was then decreased by 0.2 and the procedure was repeated using the refined phases as input for (3).

After a number of these cycles 294 phases with |E| > 1.0 were evaluated. During the later stages the minimum $|E|_{calc}$ value was reduced to 0.4 and the iteration convergence criterion relaxed to 10° to limit the computer time required. An E map based on these phases revealed the positions of 10 atoms in alternative positions along the straight part of the chain. Several other peaks which were possible atomic sites were of about the same height as a number of spurious peaks in the map and were not included at this stage. The R index based on these 10 atoms was 0.59.

The remainder of the structure was obtained by the method of Karle (1968) when a 'partial structure' is known. The phases of 99 reflexions having $|F_c| \ge 0.35$. $|F_o|$ and $|E| \ge 1.5$ were used as starting phases in (3) and (4). This set was refined and extended to 158 phases with $|E| \ge 1.3$. An E map based on these values gave the positions of 8 more atoms and reduced R to 0.49. After another cycle, in which 189 phases with $|E| \ge 1.3$ were determined, a further 7 atoms were located, giving R=0.31. The remaining 5 atoms were placed from a difference map, resulting in an R index of 0.21.

Refinement by full-matrix least-squares with isotropic thermal coefficient reduced R to 0.14. The 30 sterically positioned hydrogen atoms were placed at their expected sites assuming a C-H bond length of 1.0 Å. The inclusion of these atoms with thermal coefficients equal to those of the parent carbon atoms, reduced R to 0.127. Further refinement during which the hydrogen atom parameters were included in the structure factor calculations, but were not refined in the least squares, gave a final R value of 0.109.

A difference Fourier was evaluated at this stage; however none of the 13 hydrogen atoms belonging to the amide and methyl groups could be positively identified. Although the hydrocarbon chain and most of the atoms in the polar groups are probably vibrating anisotropically the introduction of additional parameters into the least squares was not considered justified in

view of the limited number of observed reflexions available.

Scattering factors for carbon, nitrogen and oxygen were taken from *International Tables for X-ray Crystallography* (1962), while for hydrogen the values given by Stewart, Davidson & Simpson (1965) were used. Reflexion weights were initially calculated from the counting statistics according to Evans (1961), however in the final stages of refinement somewhat better results were obtained by use of the function

$$w=1$$
 for $|F_o| < 27$,
 $w=27/|F_o|$ for $|F_o| > 27$

The observed and calculated structure factors are listed in Table 2 and the final positional and isotropic thermal parameters in Table 3. The calculated hydrogen atom positions are given in Table 4.

Table 4. Calculated hydrogen atom coordinates

	X/a	Y/b	Z/c
H(11)	−0·0227 Å	1 ·2 811 Å	0∙2054 Å
H(12)	0.1469	1.469	0.2164
H(21)	0.4973	1.1935	0.1895
H(31)	-0.0021	1.1058	0.1704
H(41)	0.5290	1.0111	0.1547
H(51)	0.0312	1.0708	0.1329
H(61)	0.5705	0.9950	0.1145
H(62)	0.3697	1.1152	0.1022
H(71)	0.0224	0.9088	0.0968
H(72)	0.2643	0.7898	0.1081
H(81)	0.5782	0·8442	0.0800
H(82)	0.3695	0.9655	0.0688
H(91)	0.0208	0.7596	0.0611
H(92)	0.2838	0.6390	0.0719
H(101)	0.5841	0.6916	0.0434
H(102)	0.3698	0.8114	0.0326
H(111)	0.0682	0.6014	0.0261
H(112)	0.2902	0.4830	0.0361
H(121)	0.2844	0.5459	0.0064
H(122)	0.3263	0.6598	-0.0038
H(131)	0.0202	0.4475	-0.0091
H(132)	0.2993	0.3338	0.0010
H(141)	0.5867	0.3958	-0.0291
H(142)	0.3555	0.2072	-0.0393
H(151)	0.0720	0.2900	-0.0420
H(152)	0.3002	0.1778	-0.0345
H(161)	0.5931	0.2412	-0.0643
H(162)	0.3617	0.3511	-0.0749
H(171)	0.0739	0.1286	-0.0805
H(172)	0.3002	0.0178	−0 ·0691

Discussion

The molecular geometry and atom numbering are illustrated in Fig. 1. The structure of the molecule is in agreement with the formula D-erythro-1,3-diacetoxy-2acetamido-4-trans-octadecene and confirms the configuration established by Carter & Fujino (1956.) The hydrocarbon chain is bent at the trans double bond and the acetoxy group attached at C(1) forms a continuation of the zigzag backbone. Atoms C(5) to C(18) and C(4) to C(20) form two approximately parallel planar groups, the perpendicular distance between which is 0.6 Å. The equations of the best planes through these two sets of atoms are

$$0.0798 Y \pm 0.2221 Y \pm 0.9718 Z \pm 0.0588 \pm 0$$

-0.1304X + 0.2198Y - 0.9668Z - 0.0671 = 0

The only large out of plane deviation is for C(2) which is displaced 0.17 Å towards the amide group. The remaining acetoxy group and the acetamido group form two planar sets with the carbon atoms to which they are attached. The equations of the best planes through

$$C(2)-N(1)-C(21)-C(22)-O(5)$$
 and $C(3)-O(2)-C(23)-C(24)-O(4)$ are

$$0.0058X + 0.1020Y + 0.9948Z - 0.3114 = 0$$

and

$$0.0730X - 0.0958Y - 0.9927Z + 0.2634 = 0$$
.

The bond lengths and angles are shown in Fig.2. The mean C-C distance in the regular part of the chain C(5)-C(18) is 1.516 Å while the mean C-C-C angle in this region is 113.9°. These values are in agreement with those previously reported for hydrocarbon chains

Fig. 1. The molecular geometry (viewed down a) and atomic numbering of the triacetylsphingosine molecule.

Fig. 2 Valency angles (degrees) and bond lengths (Å).

(e.g. Jensen & Mabis, 1966; O'Connell, 1968). The deviations from the expected sp^3-sp^3 bond length and the tetrahedral angle are probably a result of thermal anisotropy and rotary oscillations of the chains about their long axes. The bond lengths and angles in the amide configuration C(2), N(1), C(21), C(22), O(5) are in agreement with those reported in similar groups, e.g. in N-acetylglycine (Carpenter & Donohue, 1950; Donohue & Marsh, 1962) and acetanilide (Brown & Corbridge, 1954). There are no significant differences in the equivalent bond lengths in the remaining two acetyl groups. The C(19)-C(20) distance (1.47 Å) is short; however, because of the rather large standard deviations and the uncertainty in the thermal corrections it is not possible to say if this is a real effect.

Fig.3 shows the molecular packing projected on to the (100) plane. The molecules are arranged in a zigzag pattern with their chain axes at an angle of 58° to the (001) plane. Regions of chain packing alternate with regions of acetyl branched polar groups of comparable thickness. The straight portions of the hydrocarbon chains are arranged with the orthorhombic subcell packing $O \perp$ (Abrahamsson, 1959). Fig.4 illustrates the idealized subcell, which has dimensions $a_s = 5.00$, $b_s = 7.41, c_s = 2.54$ Å. Alternate molecules in the v axis direction are arranged head to tail and the C(18) methyl group packs into the space between the chains of the four adjacent molecules. Thus layers of only methyl end group contacts with weak van der Waals forces, as common in other lipid crystals, do not exist in this molecular packing. The alternating tilt of the chains and the crosslike arrangement of the branches allow the two acetoxy groups to project into the apices formed by two acetyl branches of neighbouring molecules. The acetamido group is accommodated in the space between an acetoxy group and a methyl chain end. This represents a very effective molecular packing as shown by the fairly high density $(D=1.07 \text{ g.cm}^{-3})$ of the crystals. The good crystallinity and the high melting point of triacetylsphingosine are no doubt a result of this exceptionally good packing and the favourable intermolecular forces which are associated with the bulky acetyl branches.

There are eight intermolecular contacts < 3.50 Å (Table 5), all associated with the polar region of the structure. The molecules are connected by a continuous system of N-H...O hydrogen bonds parallel to **a** between N(1) [x, y, z] and O(5) [x-1, y, z]. The N...O distance is 2.80 Å. The existence of this intermolecular bond is confirmed by the solid state infrared spectra. The N-H and C=O streching frequencies, which in solution (chloroform) are 3460 and 1680 cm⁻¹ respectively, are shifted to the lower values of 3300 and 1650 cm⁻¹. A corresponding reverse shift of the C-N streching absorption from 1500 to 1540 cm⁻¹ also occurs.

Table 5.	Intermol	lecular	contacts	≤3•	5 Å
----------	----------	---------	----------	-----	-----

C(1)O(5) [-	-1, 0,0]I	3∙50 Å
C(2)-O(5) [-	-1, 0,0]I	3.43
C(3)-O(5) [-	-1, 0,0]I	3.20
C(4)—O(4) [1, 0, 0] I	3.37
C(22)-O(4) [1, 1, 0] I	3.46
C(24)-O(1) [0, -1, 0] I	3-47
C(24)-O(3) [0, -1, 0] II	3.31
O(5)—N(1) [1, 0,0]I	2.80

I and II refer the equivalent positions x, y, z and $\bar{x}, \frac{1}{2} + y, \frac{1}{2} - z$. The numbers in square brackets indicate the translations, in multiples of a, b and c in the directions a, b and c.

The shortest C...O contact (3.31 Å), between C(24) and O(3), may be a C-H...O hydrogen bond of the type described by Sutor (1963). The angles C(23-C(24) ...O(3) and C(19)-O(3)...C(24), 102 and 128° respectively, are favourable for such a contact; however, since

Fig. 3. The molecular packing projected on plane (100). The broken dotted lines indicate hydrogen bonds between atoms in molecules one *a* axis apart.

the methyl hydrogen atoms were not located the evidence is not conclusive.

There is another short intermolecular contact of this type from the carbonyl oxygen atom O(4) to the carbon atom C(4) of the *trans* double bond. The infrared spectrum shows an interesting separation of the =C-H bending absorption at 970 and 980 cm⁻¹ indicating that one hydrogen atom of the allylic double bond is engaged in fairly strong lattice forces in the crystalline state (only one absorption at 960 cm⁻¹ in solution). The relevant distances and angles are C(4)...O(4) = $3 \cdot 37$ Å, H(41)...O(4) = $2 \cdot 47$ Å, $\angle C(23)$ -O(4)...H(41) = 140° and $\angle C(4)$ -H(41)...O(4) = 145°, where the position of H(41) has been calculated assuming a C-H distance of 1.00 Å and an ideal trigonal arrangement around C(4).

At present single-crystal investigations on sphingosine hydrochloride and *N*-acetylsphingosine are in progress. In addition to these studies a comparative discussion of the infrared spectra of these sphingosine derivatives will be published.

Fig.4. The idealized subcell, viewed down c_s .

The normalized structure factors were calculated with a program devised by Dr S.R.Hall at the National Research Council, Canada. The tangent formula calculations were made with a routine based largely on a program written by Dr Yow Lam Oh at the University of Western Australia. These sources are gratefully acknowledged. The remaining calculations were made with programs written by Abrahamsson, Aleby, Larsson, Nilsson, Selin & Westerdahl (1965) and additional routines written by one of us (A.O'C.). We would like to thank Hilger and Watts Ltd for generously allowing us to make the intensity measurements at their London laboratory. Financial support was obtained from the Swedish Medical Research Council, the Swedish National Science Research Council, the U.S. Public Health Service (GM-11653) and from the Tri-Centennial Fund of the Bank of Sweden.

References

- ABRAHAMSSON, S. (1959). Ark. Kemi, 14, 65.
- Abrahamsson, S., Aleby, S., Larsson, K., Nilsson, B., Selin, K. & Westerdahl, A. (1965). Acta Chem. Scand. 19, 758.
- BROWN, C. J. & CORBRIDGE, D. E. C. (1954). Acta Cryst. 7, 711.
- CARPENTER, G. B. & DONOHUE, J. (1950). J. Amer. Chem. Soc. 72, 2315.
- CARTER, H. E. & FUJINO, Y. (1956). J. Biol. Chem. 221, 879.
- CARTER, H. E., NORRIS, W. P., GLICK, F. J., PHILLIPS, E. G. & HARRIS, R. (1947). J. Biol. Chem. 170, 269.
- DONOHUE, J. & MARSH, R. E. (1962). Acta Cryst. 15, 941. EVANS, H. T. (1961). Acta Cryst. 14, 689.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
- JENSEN, L. H. & MABIS, A. J. (1966). Acta Cryst. 21, 770.
- KARLE, J. (1968). Acta Cryst. B24, 182.
- KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849.
- KARLSSON, K-A. & HOLM, G. L. A. (1965). Acta Chem. Scand. 19, 2423.
- KARLSSON, K-A., SAMUELSSON, B. E. & STEEN, G. O. (1968). Acta Chem. Scand. 22, 1361.
- KARLSSON, K-A. (1968). Acta Chem. Scand. 22, 3050.
- KLENK, E. & DIEBOLD, W. (1931). Z. Physiol. Chem. 198, 25
- O'CONNELL, A. M. (1968). Acta Cryst. B24, 1399.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- SUTOR, D. J. (1963). J. Chem. Soc. 204, 1105.
- THOMAS, K. & THIERFELDER, H. (1912). Z. Physiol. Chem. 77, 511.
- Тнидісним, J. L. W. (1882). J. Prakt. Chem. 25, 19.